
1

Debug Tutorial

• Introduction

• Current Command Set Summary

• How to Load an Executable

• How to Set Context

• How to View Process State

• How to View Source Code

• How to Set a Breakpoint

• How to Control Execution

• How to Examine Stack

• How to Examine Message Queues

• How to Examine Data

• How to Modify Data

• How to Terminate Debug Session

Example Session

Instructions Session Output File: Makefile File: galaxy.h File:
collapse.c File: create.c File: form.c File: main.c

2

Debug Tutorial: Introduction

Debug is an interactive command line debugger for
applications running on the Teraflops system.

• Supports TOS and Cougar applications (core is coming)

• Supports F77, C, C++ languages, including combinations
thereof (F90 is coming)

• dbx-like command set + parallel extensions (e.g. context,
msgq, MPI)

• Scalable set of processes + data reduction assist user
when viewing large amounts of output

• Symbolic debug support for programs compiled with -g

Intel Tutorial Notes Previous -- Next

3

Debug Tutorial: Current Command Set
Summary

The current set of commands available under debug are
summarized by the help command as follows:

Execution and Tracing Commands
  run        Begin executing the program being debugged.
  wait       Wait for processes to stop running.
  cont       Continue execution from where it stopped.
  trace      Print a message before a procedure or source line is executed.
  stop       Stop execution when a program location is executed or a memory location
is accessed.
  halt       Stop program execution immediately.
  status     List all breakpoints and tracepoints currently set.
  delete     Remove breakpoints and tracepoints.
  step       Execute the next source line(s), stepping into functions.
  next       Execute the next source line(s), stepping over functions.

Naming, Printing and Displaying Data
  print      Print the value of an expression, an address, or register(s).
  whatis     Print the type of the given identifier.
  assign     Assign a value to a variable, address, or register.
  set        Assign a value to a variable, address, or register.
  where      List all, or the top n, active functions on the stack.

File Access Commands
  list       List the current or specified source line(s) or procedure.
  use        Print, set, add, or remove search path directories.

Commands for Parallel Processing
  commshow   Display MPI communicator or handles.
  context    Set or display the debug context.
  sendqueue  Display messages sent but not yet received.
  recvqueue  Display message receive requests posted but not satisfied.
  process    Display state information about user processes controlled by debug.

Miscellaneous Commands
  <Ctrl-C>   Interrupt the current command and give a new prompt.
  alias      Create an alias or display aliases.
  unalias    Delete previously-defined aliases.
  ?
  help       Display a synopsis of debug commands, or a help message.
  setv       Set or display the value of a variable, or display all variables.
  unsetv     Delete previously-defined debugger variables.
  source     Read and execute debug commands from a file.
  exit
  quit       Terminate the debug session and exit debug.
  debug      Load specified program for debugging.
  kill       Terminate and remove processes.

4

Machine-Level Commands
  tracei     Print a message just before an address is executed.
  stopi      Stop execution just before an address is executed.
  stepi      Single step machine instructions, stepping into functions.
  nexti      Single step machine instructions, stepping over functions.
  listi      Display machine code listing.

Some general rules which apply across the command set are
as follows:

• Variable names are evaluated using scope of current point
of execution unless specified explicitly. The syntax for
scope specification is

[ `sourcefile` ][ procedure` | linenumber` ] variable

NOTE: The ` above is a back-quote character.

• File names may not include shell metacharacters except
for ~.

• Rules for constructing a valid expression follow those of
the target language except that procedure calls,
assignment operators and type casts are not allowed.

Intel Tutorial Notes Previous -- Next



5

Debug Tutorial: How to Load an Executable

Invocation syntax:

debug [ -n ] [ -s startup ] [ yod_args ] [ prog_name ] [
prog_args ]

Command syntax:

debug [ -n ] [ yod_args ] [ prog_name ] [ prog_args ] [ <
input_file ]
[ > output_file ]

The command line debugger runs native on the Teraflops
system. It is invoked by simply entering debug.

• The program name can be included on the invocation
command line resulting in its being loaded prior to the first
debug prompt.

• Alternatively, the debug command can be used to (re)load
the program after invocation.

• A TOS application load requires the use of the -n switch.

• A Cougar application load is the same as a yod command
line, simply replace yod with the debug command.

• Startup files specified at invocation are read immediately
followed by .debuginit (located in cwd or $HOME). These
are useful for defining personal command aliases and

6

speeding up the setup process for repetitive debug
sessions.

• Source location search paths are specified with the use
command.

• debug without arguments gives information about a load
program and general debug environment.

Examples:

In this example, a parallel Cougar application is loaded after
the debugger was invoked, using the debug command.

Debug  debug -sz 16 hello 1 2 3 abc  outputlog
 *** reading symbol table for /home/karla/hello...

 *** initializing Debug for parallel application...
 *** load complete
(all)  debug
Debugger Status:
  Mode      : parallel
  Program   : /home/karla/hello
  Arguments : 1 2 3 abc
  Input     :
  Output    : outputlog
  Yod       : /cougar/bin/yod
  YodArgs   : -sz 16
  LogFile   :
  More      : ON
  MsgStyle  : NX

This example loads a TOS application on the invocation line of
the debugger.

{jethro:70} debug -n hello.osf

 *** Debug (Parallel Debugger), Release 1.6 beta
 *** Copyright (c) 1990,1991,1992,1993,1994,1995,1996 Intel Corporation

 *** reading symbol table for /home/karla/hello.osf...

 *** load complete
(host)  debug

7

Debugger Status:
  Mode      : non-parallel
  Program   : /home/karla/hello.osf
  Arguments :
  Input     :
  Output    :
  Yod       : /cougar/bin/yod
  YodArgs   :
  LogFile   :
  More      : ON
  MsgStyle  : NX

Intel Tutorial Notes Previous -- Next

8

Debug Tutorial: How to Set Context

Command syntax:

context ( { all | node_list } )
context ( comm_handle : { all | rank_list } )
commshow [ context ] [ expression | data_address ]

A context defines the set of processes to which a command
applies.

• Prompt shows default context. It initially contains all nodes
on which a program is loaded.

• context command changes the default context.

• Alternatively, a context can be specified for an individual
command which overrides the default.

• A TOS application is given a context of host.

• A Cougar application context consists of one or more
logical node numbers, all, or a communicator handle and
rank list.

• context without arguments prints entire node list.

• commshow without arguments prints list of communicator
handles.

• commshow given a MPI_Comm type variable prints its



9

communicator handle.

Example context specifications:

context (host)
context (0)
context (all)
context (0,1)
context (1..20, 25, 30..35)
context (COMMWORLD:all)
context (COMM1:0,5)
context (COMMSELF4:0)
context (ICOMM2:all)

Example communicator handles as displayed by commshow :

In the case below where commshow is given a specific
variable to find the handle of, it is normal for an error to be
reported for any process which is not contained in that
communicator.

(COMMWORLD:all)  commshow
Intracommunicators:
Name        Size    Rank (in COMMWORLD)
=======     =====   ===================
COMMWORLD      6    0..5
COMM1          5    1..5

COMMSELF[0..5]

Intercommunicators:
Name        Intracommunicator Pair
=======     ======================

(COMMWORLD:all)  commshow other
  ***** (COMMWORLD:0) *****

 ** comm3.c{}main(int, char**)#34 other **

10

ERROR: cannot get communicator information
***    Null pointer argument

  ***** (COMMWORLD:1..5) *****

 ** comm3.c{}main(int, char**)#34 other **
other = COMM1

Intel Tutorial Notes Previous -- Next

11

Debug Tutorial: How to View Process State

Command syntax:

process [ context ] [ change ] [ full ]

Process states fall into two general catergories, running and
stopped. Many commands cannot act upon a process in a
running state and will print an error if this is attempted. The
halt command can be used to put a process into a stopped
state so that it can be examined.

• process lists the state of all processes in the context. Any
process in a stopped state includes its current location and
the reason it stopped. An '*' to the left of the context
column indicates a state change since the last time that
process's state was displayed. (The '' currently has no
meaning.)

• A program which has been loaded is automatically
executed to the first line of user code and placed in the
Initial state.

• A program is automatically stopped just prior to executing
the exit procedure and placed in the Exiting state. Any
process continued past this point enters the Exited state
and is no longer valid.

• Running states consist of Executing and Stepping. A

12

program executing a blocking receive will be in one of
these states.

• The halt command stops execution and places the
process in the Interrupted state.

• A process which just completed a next, step, nexti, or
stepi command will be in the Stepped state.

• A process which encountered a code or data breakpoint
will be in the Breakpoint state. The number of the
breakpoint encountered is included in the reason field.

• A process for which a signal has arrived is placed in the
Signaled state. The name of the signal is included in the
reason field. The signal handler (default or user-defined)
will not be executed until execution is resumed.

• The change switch causes only processes' with a state
change to be displayed. The full switch causes a
procedure name to be fully qualified.

• The step, next, and wait commands automatically display
process state when they complete.

Example process state display:

        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ==========
====================
 (0)                    Initial                Line 16    main()
 (1,3)                  Stepped                0x0003b410 _doprnt()
*(2)                    Stepped                Line 19    main()
 (4)                    Breakpoint   C Bp2     Line 20    main()
*(5)                    Signaled     SIGSEGV   Line 13    one()



13

Debug Tutorial: How to View Source Code

Command syntax:

list [ context ] [ start_line | procedure ] [ count ]

Source files are automatically searched for in the current
directory. The use command should be used to add other
directories to be searched or to change the order in which the
paths are to be searched.

• The list command without arguments displays 10 source
lines starting at the current point of execution. count can
be specified to change the default count and it will carry to
subsequent list commands.

• If a procedure name is specified, a 'window' of count lines
before and after the procedure's entry point is listed.

• Subsequent uses of list continue the listing of source lines
from where the prior list left off if no arguments are
specified. Executing a process causes the starting point of
the next list to be reset.

• list may be used when processes are not stopped if a line
number or procedure name is specified.

• The source listing is numbered with a '*' preceding a line
number to indicate a breakpoint can be set there.

14

• listi displays disassembled code, intermixed with source
line numbers if the program was compiled with -g.

Examples:

In this example, list was given no arguments so the source
listing will begin at the current point of execution for each
process. Process 0 is stopped at line 7 while the other
processes are at line 16.

(all)  list
***** (0) *****
./hello.c
* 7    int a = 0;
  8    int *ptr;
  9
* 10    i++;
* 11    b=4;
* 12    i = a+b;
* 13 }
  14
  15 main()
* 16 {
  17    int i;
***** (1..3) *****
./hello.c
* 16 {
  17    int i;
* 18    int p1 = 555;
* 19    int p2 = 1234;
  20
* 21    printf("Hello has started on %d\n", mynode());
* 22    one( p1 );
* 23    printf("mystring=\"%s\"\n", mystring);
* 24 }

In this example, a disassembly is requested for procedure one.

(all)  listi one
  ***** (all) *****
  hello.c{}one(int)#5
00020130: 83ec0c                 sub      0xc,esp
00020133: 896c2408               mov      ebp,8(esp)
00020137: 8d6c2408               lea      8(esp),ebp
  hello.c{}one(int)#7
0002013b: c745fc00000000         mov      0x0,-4(ebp)
  hello.c{}one(int)#10

15

00020142: 8b4508                 mov      8(ebp),eax
00020145: 40                     inc      eax
00020146: 894508                 mov      eax,8(ebp)
  hello.c{}one(int)#11
00020149: c745f804000000         mov      0x4,-8(ebp)
  hello.c{}one(int)#12
00020150: 8b45f8                 mov      -8(ebp),eax
00020153: 0345fc                 add      -4(ebp),eax
00020156: 894508                 mov      eax,8(ebp)
  hello.c{}one(int)#13
00020159: 89ec                   mov      ebp,esp
0002015b: 5d                     pop      ebp
0002015c: c3                     ret

Intel Tutorial Notes Previous -- Next

16

Debug Tutorial: How to Set a Breakpoint

Command syntax:

stop [ context ] [ in | at ] { line_num | procedure } [ ,count |
if condition ]
stop [ context ] { rw | w } { expression | data_address } [
,count | if condition ]
stopi [ context ] [ at ] text_address [ ,count | if condition ]
trace [ context ] [ in | at ] { line_num | procedure } [ ,count |
if condition ]
tracei [ context ] [ at ] text_address [ ,count | if condition ]
delete [ context ] { all | bkpt_num }
status [ context ] [ >filename ]

Breakpoints force execution of a program to stop at points of
interest to allow examination of data, registers, stack, and
message queues.

A code breakpoint is placed on an instruction address.
Execution is stopped before that instruction is executed. A data
breakpoint, which is referred to here as a watchpoint, is placed
on a data address. In this case, execution stops after that
address has been accessed.

• stop followed by a line number sets a code breakpoint at
the start of that source line. Note: Do not set a
breakpoint on a loop statement and expect it to be hit



17

while the loop is executed. Specify the first line within
the loop instead.

• stop followed by a procedure name sets a code
breakpoint after the preamble of that procedure.
Procedure parameters are therefore defined when
execution stops. An attempt to set a breakpoint at the line
number that corresponds to this location will fail.

• stop with a -rw or -w switch sets a watchpoint on the
variable or address specified. The size of a watchpoint
object is currently always assumed to be 4 bytes. Note:
The process command's location field indicates the
next instruction to be executed. Thus, watchpoints
which fire at the very end of a source line will appear
with the line number of the next source line to be
executed rather than the source line on which the
watchpoint occurred.

• Watchpoints are set using hardware registers which
makes them fast, but limits their number to 4.

• ,count or if condition can be specified to delay the reported
occurrence of a breakpoint or watchpoint until the
condition is met. The count option results in the breakpoint
or watchpoint being reported after every count times it is
encountered. A condition is a simple expression that
evaluates to True (non-zero) or False (0). The breakpoint
or watchpoint is only reported when the condition
evaluates to True. A condition consists of equivalence

18

operators and logical operators. The syntax used must be
the same as that of the program under debug, e.g. > for C
and .GT. for Fortran.

• stopi sets a code breakpoint on an instruction address.

• trace and tracei are similar to code breakpoints. When
they are encountered a message is printed and execution
continues.

• delete removes breakpoints, watchpoints, and tracepoints.

• status lists breakpoints, watchpoints, and tracepoints
along with their associated number. If the redirection
option is specified () a file containing these breakpoints,
watchpoints, and tracepoints is created. They are written
to the file in the form of debug commands suitable for use
as a startup file or source command input file.

Examples:

(0)  stop 10
(0)  stop one
(0)  stop 25,2
(0)  stop -rw myvar if myvar < 0
(0)  stop -w one`i
(0)  status

( 1) stop at line 10:hello.c:one():(0)
( 2) stop in one():hello.c:one():(0)
( 3) stop at line 25:hello.c:main():(0)
( 4) stop if access myvar:::(0)
( 5) stop if write i:hello.c:one():(0)
(0)  delete all

19

Debug Tutorial: How to Control Execution

Command syntax:

cont [ context ]
run [ prog_args ] [ < input_file ] [ > output_file ]
wait [ context ]
next [ context ] [ count ]
nexti [ context ] [ count ]
step [ context ] [ count ]
stepi [ context ] [ count ]

Program execution is controlled by first setting breakpoints
and/or watchpoints and then running the application until one of
them is encountered. Alternatively, execution can be stepped
along one source line (or one instruction) at a time.

• cont command resumes execution from the current
location.

• run command (re)starts execution at the beginning of the
program. Application arguments and I/O redirection of the
preceding load or run command are reused unless
specified. Breakpoints, watchpoints and tracepoints are
preserved.

• wait must be used with cont and run to allow terminal I/O
to occur while the program is executing. The debugger

20

prompt will not appear until all processes in the context
have reached a stopped state. During this time, any
keyboard input will be consumed by the application and
output from the application is printed to the screen
immediately.

• If wait is not used, application output is only printed to the
screen between execution of debugger commands. In this
case, hitting the Return key several times will cause the
buffered application output to be displayed to the screen.

• Use <Ctrl-C> to interrupt a debug command such as wait.
Note: <Ctrl-C> DOES NOT STOP PROGRAM
EXECUTION!!

• Use the halt command to interrupt program execution.
Note: halt DOES STOP PROGRAM EXECUTION!!

• next causes a single source line to be executed. A
procedure call will be treated as a single source line, thus
stepping over any procedures.

• step acts the same as next except that procedures are
stepped into and executed line by line. A procedure which
does not contain line number information is treated as a
single source line and stepped over.

• stepi and nexti cause a single instruction to be executed.

• Use count with any of the next and step commands to
execute multiple lines.



21

Examples:

(all)  cont;wait
Hello has started on 0
Hello has started on 1
Hello has started on 2
Hello has started on 3
Hello has started on 4
Hello has started on 5
        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ==========
====================
*(all)                  Breakpoint   C Bp1     Line 22    main()
(all)  step(0)
        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ==========
====================
*(0)                    Stepped                Line 5     one()
(all)  next(2,3)
        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ==========
====================
*(2,3)                  Stepped                Line 24    main()
(all)  run;wait
/cougar/bin/yod: Received SIGINT (2)
 *** initializing Debug for parallel application...
Hello has started on 0
Hello has started on 1
Hello has started on 2
Hello has started on 3
Hello has started on 4
Hello has started on 5
        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ==========
====================
*(all)                  Breakpoint   C Bp1     Line 22    main()

Intel Tutorial Notes Previous -- Next

22

Debug Tutorial: How to Examine Stack

Command syntax:

where [ context ] [ count ]

A stack traceback lists the call sequence which got the
program to its current execution point. The traceback is
displayed such that the first procedure listed indicates the
current point of execution.

• where displays a stack traceback. If count is specified, the
stack display is limited to the top count procedures.

• Procedure names are displayed even when the program
was not compiled with -g. If a function name cannot be
determined, "????()" is displayed in its place. This is
currently seen at the bottom of all stack tracebacks and
can be ignored.

Examples:

(all)  where
***** (0) *****
one(int) [hello.c{} #7]
main(void) [hello.c{} #24]
cstart() [unknown{} 0x00025646]
????() [hello.c{} 0x00020120]
***** (1) *****
main(void) [hello.c{} #24]
cstart() [unknown{} 0x00025646]
????() [hello.c{} 0x00020120]
(all)  where(0) 1
***** (0) *****
one(int) [hello.c{} #7]

23

Debug Tutorial: How to Examine Message
Queues

Command syntax:

sendqueue [ context ] [ all ]
recvqueue [ context ] [ all ]

Programs doing message passing may have unexpected
results or hang because message sends and receives either
match unexpectedly or not at all. The ability to view messages
and receives sitting in system queues can provide critical
information to resolve this kind of programming error.

• sendqueue displays all messages sent to, but not
received by, the processes in the context.

• recvqueue displays all unsatisfied receives posted by the
processes in the context

• When MPI communicators are used for message passing,
the messages displayed are filtered so that only those
messages sent within the communicator specified in the
context are displayed. Use the all switch to eliminate this
additional filter.

• If a posted receive specified a wild card source process or
tag, it appears as a -1 for NX messages and ANY for MPI

24

messages.

• If a communicator no longer exists for a message in one of
these queues it is displayed with a communicator handle
of COMMUNKNOWN and is only seen when the all switch
is used.

• Message length is always in bytes, not number of
elements.

• Only point-to-point messages are currently included in
these displays.

Examples:

(COMMWORLD:all)  sendqueue

 *** Unreceived messages in (COMMWORLD:all)

                                                    Msg Length
      Source          Destination       Msg Tag     (in bytes)
================== ================== ============ ============
(COMMWORLD:0)      (COMMWORLD:1)      22           10
(COMMWORLD:0)      (COMMWORLD:2)      22           10
(COMMWORLD:0)      (COMMWORLD:3)      22           10
(COMMWORLD:0)      (COMMWORLD:4)      22           10
(COMMWORLD:0)      (COMMWORLD:5)      22           10
(COMMWORLD:all)  sendqueue -all

 *** Unreceived messages in (COMMWORLD:all)

                                                    Msg Length
      Source          Destination       Msg Tag     (in bytes)
================== ================== ============ ============
(COMMWORLD:0)      (COMMWORLD:1)      22           10
(COMM1:0)          (COMM1:0)          33           10
(COMMWORLD:0)      (COMMWORLD:2)      22           10
(COMM1:0)          (COMM1:1)          33           10
(COMMWORLD:0)      (COMMWORLD:3)      22           10
(COMM1:0)          (COMM1:2)          33           10
(COMMWORLD:0)      (COMMWORLD:4)      22           10
(COMM1:0)          (COMM1:3)          33           10
(COMMWORLD:0)      (COMMWORLD:5)      22           10
(COMM1:0)          (COMM1:4)          33           10



25

 *** Unreceived messages in (all)

                                                    Msg Length
      Source          Destination       Msg Type    (in bytes)
================== ================== ============ ============
(COMMWORLD:all)  sendqueue(comm1:all)

 *** Unreceived messages in (COMM1:all)

                                                    Msg Length
      Source          Destination       Msg Tag     (in bytes)
================== ================== ============ ============
(COMM1:0)          (COMM1:0)          33           10
(COMM1:0)          (COMM1:1)          33           10
(COMM1:0)          (COMM1:2)          33           10
(COMM1:0)          (COMM1:3)          33           10
(COMM1:0)          (COMM1:4)          33           10
(COMMWORLD:all)  recvqueue

 *** Unsatisfied receives posted in (COMMWORLD:all)

                                                    Msg Length
  Recv Posted By      For Msg From      Msg Tag     (in bytes)
================== ================== ============ ============
(COMMWORLD:all)  recvqueue -all

 *** Unsatisfied receives posted in (COMMWORLD:all)

                                                    Msg Length
  Recv Posted By      For Msg From      Msg Tag     (in bytes)
================== ================== ============ ============
(COMM1:0)          (COMM1:0)          22           10
(COMM1:1)          (COMM1:0)          22           10
(COMM1:2)          (COMM1:0)          22           10
(COMM1:3)          (COMM1:0)          22           10
(COMM1:4)          (COMM1:0)          22           10

 *** Unsatisfied receives posted in (all)

                                                    Msg Length
  Recv Posted By      For Msg From      Msg Type    (in bytes)
================== ================== ============ ============
(COMMWORLD:all)  recvqueue(comm1:0)

 *** Unsatisfied receives posted in (COMM1:0)

                                                    Msg Length
  Recv Posted By      For Msg From      Msg Tag     (in bytes)
================== ================== ============ ============
(COMM1:0)          (COMM1:0)          22           10

Intel Tutorial Notes Previous -- Next

26

Debug Tutorial: How to Examine Data

Command syntax:

print [ context ] [ format ] { expression | data_address } [
,count ]
print [ context ] [ format ] -register_name
print [ context ] -reg
whatis [ context ] identifier

The debugger provides for the examination of data items in the
program without having to insert print statements.

• print displays the value of a symbol or an expression.

• print with a structure name displays the value of each
element in the structure.

• print with an array name displays the entire array from the
beginning. Use ,count to control the number of elements
printed.

• print with -reg switch or a specific register name switch
displays the contents of the register(s).

• print with a simple, unparenthesized number assumes the
number to be a data address and attempts to print the
value stored at that address. Note: This is an anomaly
which will be changed when the address command is

27

functional.

• Format switches can be used to convert the form in which
a value is displayed (available switches: d, o, x, l, s, a, f,
F, m, M).

• whatis displays the data type for a given identifier.

• To get the data address of a variable, use '&' in C and
'LOC()' in Fortran.

Examples:

(all)  print l
***** (0) *****
 ** `bob.c`level3`53`l **
l = 3
***** (1) *****
 ** `bob.c`level1`68`l **
l = 1
***** (2) *****
 ** `bob.c`level2`60`l **
l = 2
(all)  print main`S1
***** (all) *****
 ** `bob.c`main`75`S1 **
struct AnyStruct {
    int  i1 = 1
    int  i2 = 0
    char  c1 = '\0000'
    char  * cPtr1 = 0x00000000
}
(all)  print(0) carry
***** (0) *****
 ** `bob.c`level3`53`carry **
  carry[0] = 'a'
  carry[1] = 'b'
  carry[2] = 'c'
  carry[3] = 'd'
  carry[4] = 'e'
(all)  print globalCharPtr
***** (all) *****
 ** `bob.c`main`101`globalCharPtr **
globalCharPtr = 0x008200e0
(all)  print *globalCharPtr
***** (all) *****
 ** `bob.c`main`101`*globalCharPtr **

28

*globalCharPtr = 'a'
(all)  print &ll
***** (all) *****
 ** `bob.c`main`101`&ll **
&ll = 0x7fc40434
(all)  whatis arry
***** (all) *****
int  arry[5][4]
(all)  whatis carry[0]
***** (all) *****
char
(all)  whatis S1
***** (all) *****
struct AnyStruct {
    int  i1;
    int  i2;
    char  c1;
    char  * cPtr1;
}
(all)  whatis level1i
***** (all) *****
int  level1(long )

Intel Tutorial Notes Previous -- Next



29

Debug Tutorial: How to Modify Data

Command syntax:

set [ context ] variable[ ,count ] = expression
set [ context ] [ size_switch ] address[ ,count ] =
expression
set [ context ] [ size_switch ] -register_name = expression

It may be useful to modify a data item during runtime and
continue execution to see what happens, thus avoiding a re-
compilation.

• set modifies the contents of a specified variable, address,
or register.

• assign is another name for this command.

• If an array name is specified, each element in the array will
be set to the specified value.

• Assignment to an entire structure is not allowed. Must
specify an individual element.

• Switches can be used to explicitly indicate the number of
bytes to be modified when specifying an address or
register (available switches: b, s, l, d).

• Modification of data items does not persist when re-
running the program from the beginning.

30

Examples:

(all)  assign i = 5
(all)  assign carry[0]='A'
(all)  assign(2..3) arry,4=100
(all)  assign f1=3.3333

Intel Tutorial Notes Previous -- Next

31

Debug Tutorial: How to Terminate Debug
Session

Command syntax:

quit
exit

quit or exit will cause the loaded program to be terminated
immediately and the debugger to exit.

Example:

(all)  quit
*** Debug exiting
/cougar/bin/yod: Received SIGINT (2)

Intel Tutorial Notes Previous -- Next

32

Debug Tutorial: Instructions for Example

This example session will introduce you to basic debug
commands.

You must first collect the example source files and Makefile
and build the executable galaxyf. This example code is a small
demonstration program that does NX message passing.

Starting debug
• Change your directory so that you are present in the directory where the example executable is

located.

• Start debug on eight nodes:
debug -sz 8 galaxyf

• debug should come up, pause while loading the processes, and then display the debug prompt
containing the default context.

• If the source files for the example are in a different directory, add that directory to the source
search path list with the use command:
use + galaxy

Setting Context and Viewing Process State
• The context defines the set of processes to which a command is applied. The default context

displayed in the prompt can be changed by issuing the context command with a new context
argument. Change the context to include only 1 process and then change it back again:
context(1)
context(all)

• Most commands allow a context specification which causes the context to change only for the
single command.

• The state of the processes can be determined using the process command. Display the state of the
processes immediately after loading:
process



33

Viewing Source and Setting Breakpoints
• A line numbered source code listing is given by the list command. You can see the line you are

currently stopped at by entering:
list

• Entering list again will continue listing from where the previous list left off:
list

• Now list the lines where we will be setting some breakpoints:
list 40

• Set breakpoints on lines 44, 46, and 48 using the stop command as follows:
stop 44; stop 46; stop 48

• Use the status command to confirm the breakpoints are set:
status

• Now execute the program with the cont command as follows:
cont;wait

• Note the use of the wait command in conjunction with cont which allows any program terminal
I/O to occur.

• Shortly, a process state display will appear (caused by the wait) which shows processes stopped
at lines 44, 46, and 48.

• The context indicates which processes' are stopped at each breakpoint.

Viewing Data
• The contents of a variable is displayed using the print command. Print the value of a variable:

print my_node

• The data values are unique for each process, so each is listed separately.

• Print the first 5 elements of the receive buffer array:
print recvLeft.fMessage,10

• In this case the data values are the same across all of the nodes so a single list is displayed.

Forcing Message Blocking Situation
• Set a breakpoint on the message receive call in form.c procedure Form() at line 20:

stop `form`20

• Resume execution of the program:
cont;wait

34

• After waiting awhile, you realize the program is taking longer than expected to reach the
breakpoint. Interrupt the wait command:
<Ctrl-C>

• Check the state of the processes:
process

• Note that processes 2, 4, and 6 (for eight process load) have hit the breakpoint while the other
processes remain in the Executing state.

• Stop these processes with the halt command:
halt

• The previously Executing processes should now be in the Interrupted state as seen with the
process command:
process

Viewing the Stack
• The call stack is displayed with the where command:

where

• You can now determine that the processes you halted are stopped within a routine that reflects a
blocking receive was in progress.

• You can view the source code for a particular function of interest (e.g. to see the blocking call):
list Form

• Note that a window of lines is displayed in this case.

Viewing the Message Queue
• Information about receives in progress is displayed with the recvqueue command:

recvqueue

• Pending message information is viewed using the sendqueue command:
sendqueue

Exiting Debug
• You can allow the program to finish executing at this point or simply exit the debugger. To finish

the execution, remove all of the breakpoints using the delete command and continue the
program:
delete all
cont; wait

To terminate the program and exit the debugger use the quit command (or exit):
quit

35

Debug Tutorial: Example Session Output

Go to:

• invoke debug

• use command

• context command

• process command

• list command

• stop command

• status command

• cont command

• print command

• interrupt wait command

• halt command

• where command

• recvqueue command

• sendqueue command

• delete command

• quit command

% debug -sz 8 galaxyf

 *** Debug (Parallel Debugger), Release 1.6 beta
 *** Copyright (c) 1990,1991,1992,1993,1994,1995,1996 Intel Corporation

 *** reading symbol table for /home/karla/galaxyf...

 *** initializing Debug for parallel application...
 *** load complete

36

(all) > use + galaxy

*** Global path list:
galaxy

(all) > context(1)

(1) > context(all)

(all)  process
        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ========== ====================
>*(all)                  Initial                Line 24    main()

(all) > list

***** (all) *****
galaxy/main.c
* 24     {
  25     int            num_nodes;
  26
  27
* 28     SetClock();
  29
* 30     my_node   = mynode();
* 31     num_nodes = numnodes();
  32
  33     /*\ Assert where messages will be sent to
  34     \*/
(all) > list
***** (all) *****
galaxy/main.c
  34     \*/
  35
* 36     DetermineRouting( my_node, num_nodes, &left_node, &right_node);
  37
* 38     InitializeMessages( my_node, num_nodes);
  39
  40     /*\ Distribute work
  41     \*/
  42
* 43     if ( my_node == 0)
* 44         Create();
(all) > list 40
***** (all) *****
galaxy/main.c
  40     /*\ Distribute work
  41     \*/
  42
* 43     if ( my_node == 0)
* 44         Create();

* 46         Collapse();
  47     else
* 48         Form();
  49
  50     /*\ Barrier



37

(all) > stop 44; stop 46; stop 48

(all) > status

( 1) stop at line 44:main.c:main():(all)
( 2) stop at line 46:main.c:main():(all)
( 3) stop at line 48:main.c:main():(all)

(all) > cont; wait

        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ========== ====================
>*(0)                    Breakpoint   C Bp1     Line 44    main()
>*(1..6)                 Breakpoint   C Bp3     Line 48    main()
>*(7)                    Breakpoint   C Bp2     Line 46    main()

(all) > print my_node

***** (0) *****
 ** `main.c`main`44`my_node **
my_node = 0
***** (1) *****
 ** `main.c`main`44`my_node **
my_node = 1
***** (2) *****
 ** `main.c`main`44`my_node **
my_node = 2
***** (3) *****
 ** `main.c`main`44`my_node **
my_node = 3
***** (4) *****
 ** `main.c`main`44`my_node **
my_node = 4
***** (5) *****
 ** `main.c`main`44`my_node **
my_node = 5
***** (6) *****
 ** `main.c`main`44`my_node **
my_node = 6
***** (7) *****
 ** `main.c`main`44`my_node **
my_node = 7
(all) > print recvLeft.fMessage,10
***** (all) *****
 ** `main.c`main`44`recvLeft.fMessage **
  recvLeft.fMessage[0] = '\0000'
  recvLeft.fMessage[1] = '\0000'
  recvLeft.fMessage[2] = '\0000'
  recvLeft.fMessage[3] = '\0000'
  recvLeft.fMessage[4] = '\0000'
  recvLeft.fMessage[5] = '\0000'
  recvLeft.fMessage[6] = '\0000'
  recvLeft.fMessage[7] = '\0000'
  recvLeft.fMessage[8] = '\0000'
  recvLeft.fMessage[9] = '\0000'
(all) > stop `form`20

38

(all) > cont; wait

^C

(all) > process
        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ========== ====================
>*(0,1,3,5,7)            Executing                         unknown fcn
>*(2,4,6)                Breakpoint   C Bp4     Line 20    Form()

(all) > halt

(all) > process
        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ========== ====================
>*(0)                    Interrupted            0x00033697 def_vrecv()
>*(1,3,5,7)              Interrupted            0x0002c063 sptl_ind_msg_probe()
> (2,4,6)                Breakpoint   C Bp4     Line 20    Form()

(all) > where

***** (0) *****
def_vrecv() [unknown{} 0x00033697]
_reduce_short() [unknown{} 0x000309ba]
_gsync() [unknown{} 0x0002111b]
gsync() [unknown{} 0x00020fe0]
main(int, char**) [main.c{} #55]
cstart() [unknown{} 0x00028cf6]
????() [collapse.c{} 0x00020120]
***** (1) *****
sptl_ind_msg_probe() [unknown{} 0x0002c063]
_msgwait() [unknown{} 0x00025858]
_crecv() [unknown{} 0x000242fa]
crecv() [unknown{} 0x00024274]
Form(void) [form.c{} #16]
main(int, char**) [main.c{} #53]
cstart() [unknown{} 0x00028cf6]
????() [collapse.c{} 0x00020120]
***** (2,4,6) *****
Form(void) [form.c{} #20]
main(int, char**) [main.c{} #53]
cstart() [unknown{} 0x00028cf6]
????() [collapse.c{} 0x00020120]
***** (3,5) *****
sptl_ind_msg_probe() [unknown{} 0x0002c063]
_msgwait() [unknown{} 0x00025858]
_crecv() [unknown{} 0x000242fa]
crecv() [unknown{} 0x00024274]
Form(void) [form.c{} #16]
main(int, char**) [main.c{} #53]
cstart() [unknown{} 0x00028cf6]
????() [collapse.c{} 0x00020120]
***** (7) *****
sptl_ind_msg_probe() [unknown{} 0x0002c063]
_msgwait() [unknown{} 0x00025858]
_crecv() [unknown{} 0x000242fa]
crecv() [unknown{} 0x00024274]
Collapse(void) [collapse.c{} #16]

39

main(int, char**) [main.c{} #46]
cstart() [unknown{} 0x00028cf6]
????() [collapse.c{} 0x00020120]
(all) > list Form
***** (all) *****
galaxy/form.c
  1 #include <stdio.h
  2 #include <stdlib.h
  3 #include <nx.h
  4
  5 #include "galaxy.h"
  6
  7
  8
  9 void Form()
* 10     {
* 11     if ( my_node & 0x01)
  12         {
* 13         csend( 0, &sendLeft, sizeof( TMessage), left_node, 0);
* 14         csend( 0, &sendRight, sizeof( TMessage), right_node, 0);
* 15         crecv( 0, &recvLeft, sizeof( TMessage));
* 16         crecv( 0, &recvRight, sizeof( TMessage));
  17         }
  18     else
  19         {
* 20         crecv( 0, &recvLeft, sizeof( TMessage));

(all) > recvqueue

 *** Unsatisfied receives posted in (all)

                                                    Msg Length
  Recv Posted By      For Msg From      Msg Type    (in bytes)
================== ================== ============ ============
(1)                (-1)               0            68
(3)                (-1)               0            68
(5)                (-1)               0            68
(7)                (-1)               0            68

(all) > sendqueue

 *** Unreceived messages in (all)

                                                    Msg Length
      Source          Destination       Msg Type    (in bytes)
================== ================== ============ ============
(1)                (2)                0            68
(3)                (2)                0            68
(3)                (4)                0            68
(5)                (4)                0            68
(5)                (6)                0            68
(7)                (6)                0            68

(all) > delete all

(all) > cont; wait
End simulation
<1> -- <  0: Calculate from   0.00% to  12.50%>

40

<4> -- <  3: Calculate from  37.50% to  50.00%>
<2> -- <  1: Calculate from  12.50% to  25.00%>
<3> -- <  2: Calculate from  25.00% to  37.50%>
<6> -- <  5: Calculate from  62.50% to  75.00%>
<5> -- <  4: Calculate from  50.00% to  62.50%>
<7> -- <  0: Calculate from   0.00% to  12.50%>
...total time:  0.019430
<1> -- <  2: Calculate from  25.00% to  37.50%>
<4> -- <  5: Calculate from  62.50% to  75.00%>
<2> -- <  3: Calculate from  37.50% to  50.00%>
<3> -- <  4: Calculate from  50.00% to  62.50%>
<6> -- <  7: Calculate from  87.50% to 100.00%>
<5> -- <  6: Calculate from  75.00% to  87.50%>
<7> -- <  6: Calculate from  75.00% to  87.50%>
<0> -- <  1: Calculate from  12.50% to  25.00%>
<0> -- <  7: Calculate from  87.50% to 100.00%>
        Context             State      Reason    Location     Procedure
  ====================== ============ ========= ========== ====================
>*(all)                  Exiting                0x000404d0 exit()

(all) > quit

*** Debug exiting
/cougar/bin/yod: Received SIGINT (2)


